Генераторы шума и помех

Простые схемы генераторов шума и помех.

Схемы генераторов помех

0

Генератор помех на микросхеме 74LS04. Предлагаемая схема генератора помех очень проста. Но, тем не менее, она эффективно глушит диапазон шириной примерно в 500 МГц на расстоянии до 30 м. Устройство (Рис.1) выполнено на одной микросхеме 74LS04 и подстроечном конденсаторе ёмкостью 3 – 15 пф.                                                                                                                                 

 В качестве антенны использован кусок провода длинной 20 – 30 см. В зависимости от ёмкости конденсатора можно перестраиваться на любую полосу частот шириной 500 МГц.  Мощный генератор помех. Данная схема основана на известной схеме передатчика на 10 вт. (Рис.2)

  Катушки имеют следующие параметры:

  * L1 – 4 витка ПЭВ-1,0 на оправке 12 мм, отвод от середины;

  * L2 – дроссель 20 мкГн, подходит от китайского приёмника;

  * L3 – содержит 8 витков ПЭВ-1,0 на оправке 8 мм, намотана на оболочке кабеля РК-75;

  * L4 – 6 витков того же провода и на той же оправке, расположена между 2-х     половин L3.

  Следует отметить, батарейное питание тут не эффективно, ток потребления устройства более 0,5 А, поэтому нужен хороший блок питания. Транзистор должен стоять на хорошем радиаторе, иначе он может просто сгореть. Антенной служит штырь длинной 1 м. Генератор помех начинает работать сразу и настройки не требует.

В. Г.  Белолапотков, А. П. Семьян  «500 схем для радиолюбителей  ШПИОНСКИЕ ШТУЧКИ И НЕ ТОЛЬКО» Наука и техника, Санкт-Петербург, 2007г, стр. 205-207.

 

Схемы генераторов шума

1

  Цифровой генератор шума. Цифровой шум представляет собой временной случайный процесс, близкий по своим свойствам к процессу физических шумов и называется поэтому псевдослучайным процессом. Цифровая последовательность двоичных символов в цифровых генераторах шума называется псевдослучайной последовательностью и представляет собой последовательность прямоугольных импульсов псевдослучайной длительности с псевдослучайными интервалами между ними.

  Период повторения всей последовательности значительно превышает наибольший интервал между отдельными импульсами последовательности. Наиболее часто в цифровых генераторах шума применяются последовательности максимальной длинны – так называемые М-последовательности, которые формируются при помощи регистров сдвига и сумматоров по модулю 2, использующихся для получения сигнала обратной связи.

  Принципиальная схема генератора шума с равномерной спектральной плотностью в рабочем диапазоне частот приведена на Рис.1

  Этот генератор шума содержит:

  * последовательный восьмиразрядный регистр сдвига, выполненный на микросхеме К561ИР2:

  * сумматор по модулю 2 (DD2.1);

  * тактовый генератор (DD2.3, DD2.4);

  * цепь запуска (DD2.2).

  Последние элементы выполнены на микросхеме К561ЛН2. Тактовый генератор выполнен на элементах DD2.3 и DD2.4 по схеме мультивибратора. С выхода генератора последовательность прямоугольных импульсов с частотой следования около 100 кГц поступает на входы «С» регистров сдвига DD1.1 и DD1.2, образующих 8-разрядный регистр сдвига.

  Запись информации в регистр происходит по входам «D». На вход «D» регистра DD1.1 сигнал поступает с элемента обратной связи – сумматора по модулю 2 на элементе DD2.1. Однако при включении питания возможно состояние регистров, когда на всех выходах присутствуют низкие уровни.

  Так как в регистрах М-последовательности запрещено появление нулевой комбинации, то в схему введена специальная цепь запуска генератора, выполненная на элементе DD2.2. При включении питания он формирует на своём выходе уровень логической единицы, который выводит регистр из нулевого состояния. Затем на дальнейшую работу генератора цепь запуска не оказывает никакого влияния. Сформированный псевдослучайный сигнал снимается с 8-го разряда регистра сдвига и поступает для дальнейшего усиления и излучения. Напряжение источника питания может быть от 3 до 15 В.

  В устройстве использованы КМОП микросхемы серии 561, их можно заменить микросхемами серий К564, К1561 или К176. В последнем случае напряжение питания должно быть 9 В.

  Правильно собранный генератор в налаживании не нуждается. Изменением тактовой частоты генератора можно регулировать диапазон частот шума и интервал между спектральными составляющими.

  Генератор белого шума. Самым простым методом получения белого шума является использование шумящих электронных элементов ( ламп, транзисторов, различных диодов и стабилитронов ) с усилением напряжения шума. Принципиальная схема несложного генератора приведена на Рис.2.

  Источником шума является полупроводниковый диод VD1 типа КС168А, работающий в режиме лавинного пробоя при очень малом токе. Сила тока через стабилитрон VD1 составляет всего лишь около 100 мкА. Шум, как полезный сигнал, снимается с катода стабилитрона VD1 и через конденсатор С1 поступает на инвертирующий вход операционного усилителя DA1 типа КР140УД1208. На неинвертирующий вход этого усилителя поступает напряжение смещения, равное половине напряжения питания с делителя напряжения, выполненного на резисторах R2 и R3.

  Режим работы микросхемы определяется резистором R5, а коэффициент усиления – резистором R4. С нагрузки усилителя, переменного резистора R6, усиленное напряжение шума поступает на усилитель мощности, выполненный а микросхеме DA2 типа К174ХА10. С выхода усилителя шумовой сигнал через конденсатор С4 поступает на малогабаритный широкополосный громкоговоритель В1.

  Уровень шума регулируется резистором R6. Стабилитрон VD1 генерирует шум в широком диапазоне частот от единиц герц до десятков мегагерц. Однако на практике он ограничен АХЧ усилителя и громкоговорителя. Стабилитрон VD1 подбирается по максимальному уровню шума, но так как стабилитроны представляют собой некалиброванный источник шума, то стабилитрон может быть любым, с напряжением стабилизации менее напряжения питания.

  Микросхему DA1 можно заменить микросхемой КР1407УД2 или любой операционный усилитель с высокой граничной частотой коэффициента единичного усиления. Вместо усилителя на DA2 можно использовать любой другой УЗЧ.

В. Г.  Белолапотков, А. П. Семьян  «500 схем для радиолюбителей  ШПИОНСКИЕ ШТУЧКИ И НЕ ТОЛЬКО» Наука и техника, Санкт-Петербург, 2007г, стр. 200-204.

 

Вверх