Стабилизаторы напряжения

Схемы стабилизаторов напряжения, применяемых в блоках питания

Схемы стабилизаторов напряжения и тока

0

   Стабилизированные источники питания необходимы для обеспечения независимости параметров электронного устройства от изменений питающего напряжения. Практически в любой современной аппаратуре имеется стабилизатор напряжения, а то и несколько. В таких устройствах часто применяются операционные усилители ( ОУ ), с помощью которых решить эту задачу просто и эффективно с точностью регулировки и стабильности в диапазоне 0,01…0,5 %, причём ОУ легко встраивать в традиционные стабилизаторы напряжения и тока.
Простейший стабилизатор напряжения представляет собой усилитель постоянного тока, на вход которого подано постоянное напряжение стабилитрона или часть его. Нагрузочная способность такого стабилизатора определяется силой максимального выходного тока ОУ.
Следящие стабилизаторы, как правило, работают на принципе сравнения опорного и выходного напряжений, усиления их разности и управления электропроводностью регулирующего транзистора.

Стабилизатор по схеме Рис.1 выдаёт напряжение Uвых большее, чем опорное напряжение стабилитрона VD1, а стабилизатор Рис.2 — меньшее. Стабилизаторы питаются от одного источника. С помощью эмиттерного повторителя VT2 увеличивают ток нагрузки, в нашем примере — до 100 мА, но можно и более с составным повторителем на мощном транзисторе. Транзистор VT1 защищает выходной транзистор VT2 от перегрузок по току, причём датчиком тока служит резистор R8 небольшого сопротивления, включённый в цепь эмиттера транзистора VT2. Когда падение напряжения на нём превысит Uб-э=0,6 В, откроется транзистор VT1 и зашунтирует эмиттерный переход транзистора VT2. При токах нагрузки до 10…15 мА резисторы R7, R8 и транзисторы VT1, VT2 можно не ставить. Отметим, что в стабилитронах по схемам на Рис.1, 2 входное напряжение не должно превышать максимально допустимой суммы напряжений питания.

На Рис.3а приведена схема подобного стабилизатора в котором ОУ включён таким образом, что он сам питается стабилизированным напряжением. Здесь дополнительно включены несколько элементов, улучшающих работу стабилизатора напряжения. Потенциал выхода ОУ DA1 смещён в сторону положительного напряжения с помощью стабилитрона VD3 и транзистора VT1. Выходной эмиттерный повторитель — составной ( VT2, VT3 ), а к базе защитного транзистора VT4 подключён делитель R4R5, что позволяет создать «падающую» характеристику ограничения тока перегрузки. Ток короткого замыкания не превышает 0,3 А. Термокомпенсированный источник опорного напряжения выполнен на микросхеме К101КТ1А (DA2). Выходное напряжение стабилизатора, равное +15В, изменяется всего на 0,0002 % при изменении входного напряжения в пределах 19…30 В; при изменении тока нагрузки от нуля до номинального выходное напряжение падает лишь на 0,001%. В этом стабилизаторе подавление пульсаций входного напряжения частотой 100 Гц составляет 120 дБ. К достоинствам стабилизатора следует отнести также и то, что в отсутствии нагрузки потребляемый ток составляет около 10 мА. При скачкообразном изменении тока нагрузки выходное напряжение устанавливается с погрешностью 0,1% за время не более 5 мкс.

Практически нулевые пульсации напряжения на выходе может обеспечить стабилизатор по схеме Рис.4. Если движок переменного резистора R1 находится в верхнем (по схеме) положении, амплитуда пульсаций максимальна. По мере перемещения движка вниз амплитуда будет уменьшаться, так как напряжение пульсаций, поданное на инвертирующий вход ОУ через конденсатор С2, в противофазе складывается с выходным напряжением пульсаций. Примерно в среднем положении движка резистора R1 пульсации будут компенсированы.
В случае необходимости получения отрицательного выходного напряжения необходимо в качестве повторителя применить p-n-p транзистор, а также заземлить положительную шину питания ОУ. Но можно поступить по-другому, если в аппаратуре требуются стабилизированные напряжения разной полярности.

На Рис.5 приведены две упрощённые схемы соединения стабилизаторов для получения выходных напряжения разного знака. В первом случае входная и выходная цепи имеют общую шину. Пусть, например, имеются только положительные стабилизаторы. Тогда в стабилизаторе по второй схеме можно применить, если оба канала по входным цепям гальванически развязаны, чтобы можно было заземлять положительный полюс нижнего (по схеме) стабилизатора. Источником опорного напряжения для одного из каналов служит стабилитрон, а для второго — выходное напряжение первого стабилизатора. Для этого необходимо включить делитель из двух резисторов между выводами +Uст и -Uст стабилизаторов и подвести напряжение средней точки делителя к неинвертирующему входу ОУ второго стабилизатора, заземлив инвертирующий вход ОУ. Тогда выходные напряжения двух стабилизаторов ( несимметричные в общем случае ) связаны и регулирование напряжений осуществляется одним переменным резистором.

В случае если необходимо иметь два питающих напряжения с заземлённой средней точкой, то можно применить активный делитель на ОУ с повторителями для увеличения нагрузочной способности (Рис. 6). Если R1=R2, то равны и выходные напряжения относительно заземлённой средней точки. Через выходные транзисторы VT1 и VT2 протекают полные токи нагрузки, а падение напряжения на участках коллектор — эмиттер равны половине входного напряжения. Это надо иметь в виду при выборе радиаторов охлаждения.
Ключевые стабилизаторы напряжения зарекомендовали себя наилучшим образом с точки зрения экономичности, так как КПД таких устройств всегда высокий. Несмотря на их сложность по сравнению с линейными стабилизаторами, только за счёт уменьшения размеров теплоотводящего радиатора проходного транзистора ключевой стабилизатор позволяет уменьшить габариты регулируемого мощного источника питания в два — три раза. Недостаток ключевых стабилизаторов заключается в повышении уровня помех. Однако рациональное конструирование, и когда весь блок выполнен в виде экранированного модуля с расположенной непосредственно на теплоотводе мощного транзистора платой управления, позволяет свести помехи к минимуму. Устранить «пролезание» высокочастотных помех в нестабилизированный источник первичного питания и нагрузку можно путём включения последовательно радиочастотных дросселей, рассчитанный на постоянный ток 1…3 А. В ключевых стабилизаторах напряжения с успехом применяются интегральные компараторы.

На Рис. 7 приведена схема релейного стабилизатора на базе микросхемы К554СА2. Здесь компаратор DA1 работает от источников напряжения +12 и -6 В. Эта комбинация образована подключением вывода 11 положительного питания DA1 к эмиттеру транзистора VT1 (+18 В), вывода 2 — к стабилитрону VD6 (примерно +6 В), вывода 6 отрицательного питания — к нулевому потенциалу общей шины. Опорное напряжение стабилизатора формируется диодами VD3 — VD5, оно равно +4,5 В. Это напряжение подаётся на инвертирующий вход компаратора DA1, включённого по схеме детектора уровня с гистерезисной характеристикой из-за положительной обратной связи по цепи R5, R3. Цепь отрицательной обратной связи замыкается через усилительный транзистор VT2, ключевой элемент на транзисторах VT3, VT4 и фильтр L1C7. Глубину отрицательной обратной связи по выходному напряжению регулируют переменным резистором R4, в результате оно изменяется в пределах 4…20 В при минимальном входном нестабилизированном напряжении +23 В и максимальном — до +60 В с применением элементов, рассчитанных на такое напряжение. В то же время переменная составляющая выходного напряжения ( пульсации ) проходят без ослабления через конденсатор С4, поэтому регулирование выходного напряжения не приводит к пропорциональному изменению пульсаций.
Данный стабилизатор напряжения относится к числу автогенерирующих, когда в зависимости от входного напряжения и тока нагрузки, разряжающего накопительный конденсатор C7, автоматически меняется как период автоколебаний, так и время включённого состояния транзисторов VT3, VT4. Усилитель управления на компараторе DA1 и транзисторе VT2 открывает ключевой элемент в тот момент, когда потенциал инвертирующего входа станет меньше, чем потенциал неинвертирующего (опорного) входа. В этот момент напряжение на нагрузке падает несколько ниже заданного уровня стабилизации, т.е пульсирует. После включения транзисторов VT3, VT4 ток через дроссель L1 нарастает, его индуктивность и конденсатор С7 запасает энергию, так что потенциал инвертирующего входа повышается. Благодаря действию усилителя управления ключевой элемент закрывается. Затем фильтр L1C7 отдаёт некоторую часть запасённой энергии в нагрузку, причём полярность напряжения на дросселе L1 меняется и цепь питания замыкается через диод VD7. Как только напряжение на конденсаторе С7 станет ниже опорного на величину гистерезиса, вновь включаются транзисторы VT3, VT4. Далее циклы повторяются.
В качестве дросселя L1 можно применить дроссели фильтров промышленного изготовления, например из серий Д8, Д5 — плоские и др., среди которых выбирают типономинал с требуемой индуктивностью, рассчитанный на ток подмагничивания не менее ожидаемого тока нагрузки и пригодный к использованию на частотах до 50 кГц.
Диод VD7 должен быть обязательно быстродействующим с большим допустимым импульсным током, не менее удвоенного значения тока нагрузки. В стабилизаторе по схеме на Рис. 7, где ток нагрузки 2 А, возможна замена его на диоды КД212Б, КД217А и некоторые другие. Конденсатор С7 из ряда К53 или танталовый типов К52-7А, К52-9, К52-10, С9 — ёмкостью не менее 15,…2,2 мкФ.
Большая потребность в стабилизаторах для питания аппаратуры привела к необходимости разработки и производства специальных линейных микросхем — стабилизаторах напряжения. В интегральном исполнении преобладают последовательные регуляторы с непрерывным или импульсным режимом управления. Стабилизаторы строятся как для положительных так и для отрицательных напряжений питания. Выходное напряжение может быть регулируемым или фиксированным, например +5 В для питания блоков с цифровыми микросхемами или ±15 В для питания аналоговых микросхем. К данной группе из выпускаемых стабилизаторов относятся категория регулируемых стабилизаторов КР142ЕН1 и К142ЕН2.


На базе микросхем КР142ЕН1,2 можно создавать стабилизаторы отрицательных напряжений Рис. 8. При этом стабилитрон VD1 смещает уровень напряжения на выводе 8 относительно входного напряжения. Базовый ток транзистора VT1 не должен превышать максимально допустимого тока стабилизатора, иначе следует применить составной транзистор.

Широкие возможности микросхем КР142ЕН1,2 позволяют создавать на их основе релейные стабилизаторы напряжения (Рис. 9). В таком стабилизаторе опорное напряжение установлено делителем R4R5, а амплитуда пульсаций выходного напряжения на нагрузке задаётся делителем R2R3. Следует также иметь в виду, что ток нагрузки не может изменяться в широких пределах, обычно не более чем в два раза от номинального значения. Преимуществом релейных стабилизаторов является высокий КПД.

Также следует рассмотреть ещё один класс стабилизаторов — стабилизаторов тока, преобразующих напряжение в ток независимо от изменения напряжения нагрузки. Мощные источники тока предусматривают подключение к ОУ усилительных транзисторов.

На Рис.10 дана схема источника тока, а на Рис. 11 — схема приёмника тока. В обоих устройствах сила тока зависит от напряжения Uвх и номинала резистора R1, чем меньше входной ток ОУ и тем меньше ток управления первого (после ОУ) транзистора, который выбран поэтому полевым. Ток нагрузки может достигать 100 мА.

Схема простого мощного источника тока для зарядки устройства показана на Рис. 12. Здесь R4 — токоизмерительный проволочный резистор. Номинальное значение тока нагрузки Iн =ΔU/R4=5 A устанавливается примерно при среднем положении движка резистора R1. При зарядке автомобильной аккумуляторной батареи напряжение Uвх ≥ 18 В без учёта пульсаций выпрямленного переменного напряжения. В таком устройстве следует применять ОУ с диапазоном входного напряжения вплоть до напряжения положительного питания. Такими возможностями обладают ОУ К553УД2, К153УД2, К153УД6, а также КР140УД18.
Более подробно по данной тематике можно найти в источнике:
«В ПОМОЩЬ РАДИОЛЮБИТЕЛЮ» выпуск 91, МОСКВА издательство ДОСААФ СССР, 1985 стр. 39-53

Экономичный понижающий стабилизатор

0

 

Данная схема, построенная на дискретных элементах, имеет высокие характеристики, что позволяет удовлетворить особым техническим требованиям.

  Устройство представляет собой понижающий преобразователь с последовательно включёнными импульсным и линейным стабилизаторами, причём линейный стабилизатор через элемент обратной связи на оптроне DA2 управляет работой импульсного преобразователя.

  При подаче напряжения питания на выходе операционного усилителя DA1 появляется напряжение низкого уровня из-за присутствия на инвертирующем входе ОУ более высокого уровня относительно неинвертирующего входа, задаваемого падением напряжения на диоде VD2.

  Напряжение низкого уровня открывает импульсный ключ VT1, VT2. Через фильтр L1, C2 напряжение питания поступает на линейный стабилизатор DA3. Пусть линейный стабилизатор перейдёт в режим стабилизации напряжения, а разница напряжений между его входом и выходом превысит падение напряжения на цепочке VD3 и светодиоде оптрона DA2. Тогда на неинвертирующий вход ОУ поступит напряжение высокого уровня, и импульсный ключ VT1, VT2 закроется. При уменьшении напряжения на входе DA3 процесс повториться, формируя работу импульсного преобразователя.

 Устройство обладает малыми пульсациями выходного напряжения, свойственными линейным стабилизаторам, и высоким КПД присущим импульсным преобразователям. Для получения максимального КПД в качестве диода VD1 желательно взять диод Шотки, микросхему линейного стабилизатора DA3 поменять на стабилизатор с малым падением напряжения «вход-выход» (например LT1083), одновременно заменив зелёный светодиод на выпрямительный диод в прямом включении.

В. Г. Белолапотков, А. П. Семьян  «ШПИОНСКИЕ ШТУЧКИ И НЕ ТОЛЬКО, 500 схем для радиолюбителей»,  Наука и техника, Санкт-Петербург, 2007г, стр. 264-265

 

 

Стабилизатор напряжения на транзисторах

0

Один из вариантов простого стабилизатора напряжения на транзисторах показан на рисунке. Выходное напряжение регулируют резистором R2 в пределах от 1 до 14 В при токе до 1А. Выходное сопротивление стабилизатора около 0,3 Ом, коэффициент стабилизации равен примерно 40, а напряжение пульсации ( при двухполупериодном выпрямлении первичного напряжения ) не превышают 0,028 В. Стабилизатор защищён от перегрузки, автоматически возвращаясь в рабочий режим при снятия последней. Порог ограничения устанавливают резистором R3.

Статический коэффициент передачи по току регулирующего транзистора должен быть не менее 70, и этот транзистор необходимо установить на радиатор, с эффективной площадью поверхности не менее 150 см3.

Э. П. Бороноволоков, В. В. Фролов «РАДИОЛЮБИТЕЛЬСКИЕ СХЕМЫ», Киев, «ТЕХНИКА», 1985г., стр. 236

Вверх