Генератор НЧ радиолюбителя-конструктора

  Генератор НЧ является одним из самых необходимых приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов ( измерительных мостов, модуляторов и др. ).
Желательно чтобы генератор вырабатывал не только синусоидальное, но и прямоугольное напряжение, логического уровня, скважность и амплитуду которого можно регулировать.


Принципиальная схема генератора показана на Рис.1. Схема состоит из низкочастотного синусоидального генератора на операционном усилителе А1 и формирователя прямоугольных импульсов на микросхеме D1.
Схема синусоидального генератора традиционная. Операционный усилитель, при помощи положительной обратной связи ( С1-С3, R3, R4, R5, C4-C6 ) выполненной по схеме моста Винна, приведён в режим генерации. Избыточная глубина положительной обратной связи, приводящая к искажению выходного синусоидального сигнала, компенсируется отрицательной ОС R1-R2. Причём R1 подстроечный, чтобы с его помощью можно было установить величину ОС такой, при которой на выходе операционного усилителя неискажённый синусоидальный сигнал наибольшей амплитуды.

Лампа накаливания включена на выходе ОУ в его цепи обратной связи. Вместе с резистором R16 лампа образует делитель напряжения, коэффициент деления которого зависит от протекающего через него тока ( лампа Н1 выполняет функции терморезистора, увеличивая своё сопротивление от нагрева, вызванного протекающим током ).
Частота устанавливается двумя органами управления, – переключателем S1 выбирают один из трёх поддиапазонов «20-200 Гц», «200-2000 Гц» и «2000-20000 Гц». Реально диапазоны немного шире и частично перекрывают друг друга. Плавная настройка частоты производится сдвоенным переменным резистором R5. Желательно чтобы резистор был с линейным законом изменения сопротивления. Сопротивления и законы изменения составных частей R5 должны быть строго одинаковыми, поэтому применение самодельных сдвоенных резисторов ( сделанных из двух одиночных ) недопустимо. От точности равенства сопротивлений R5 сильно зависит коэффициент нелинейных искажений синусоидального сигнала.
На оси переменного резистора закреплена ручка со стрелкой и простая шкала для установки частоты. Для точной установки частоты используют цифровой частотомер.
Выходное напряжение плавно регулируют переменным резистором R6. С этого резистора поступает НЧ напряжение на милливольтметр, чтобы можно было установить необходимое выходное напряжение. Понизить установленное значение в 10 и 100 раз можно при помощи аттенюатора на резисторах R12-R14.
Максимальное выходное напряжение НЧ генератора 1,0V.
Для формирования импульсов служит ключ на транзисторе VT2 и три логических элемента на микросхеме D1. Выходной уровень КМОП логики.
Транзистор VT2 включён по схеме ключа. Это значит, что при достижении на эго базе напряжения определённого уровня он лавинообразно открывается. На базу транзистора переменное напряжение с выхода генератора подаётся через делитель R9-R10. При помощи R9 можно установить величину минимального напряжения, при котором открывается VT2. Благодаря диоду VD1, который создаёт на эмиттере транзистора небольшое отрицательное напряжение смещения, этот порог можно устанавливать от 0,1 до 1V. То есть, до максимального значения выходного напряжения генератора. В зависимости от того, как установлен этот порок, транзистор VT2 будет открываться и закрываться на определённых участках положительной полуволны низкочастотного напряжения. И от этого будет зависеть ширина импульсов, возникающих на коллекторе транзистора. Окончательно прямоугольную форму импульсам предают элементы микросхемы D1. С гнёзд Х4 и Х5 можно снимать противофазные импульсы.


Регулируют амплитуду выходных прямоугольных импульсов изменяя напряжение питания микросхемы D1 в пределах от 9,5 до 3,5V. Регулятор напряжения выполнен на транзисторе VT1.
Выключают генератор тумблером на два положения S2, отключающим генератор от источника двуполярного напряжения ±10V.


Большинство деталей расположено на печатной плате рис.2. ( 110 х 42 мм ).  Плата устанавливается в корпус перпендикулярно передней панели. Все регуляторы-резисторы, переключатели и разъёмы расположены на передней панели. Многие детали ( на Рис.2 ) смонтированы на их выводах.
Переключатель S1 галетный на три направления. Используется только два направления. Выключатель S2 – тумблер на два направления. Все разъёмы типа «Азия» от видеотехники. Дроссели L1 и L2 – от модулей цветности старых телевизоров УСЦТ, но можно использовать любые дроссели индуктивностью не менее 30 мкГн. Лампа накаливания Н1 – индикаторная с гибкими проволочными выводами ( похожа на светодиод ), на напряжение 6,3V и ток 20 mA. Можно использовать и другую лампу на напряжение 2,5-13,5V и ток не более 0,1А.


Налаживать генератор желательно используя частотомер и осциллограф. В этом случае, подстройкой резистора R1 добиваются максимального и неискажённого переменного синусоидального напряжения на выходе генератора, во всём диапазоне частот ( это, обычно, соответствует величине выходного переменного напряжения 1V ). Затем, более точным подбором R4 и R3 ( эти сопротивления должны быть одинаковы ) устанавливают диапазоны перестройки частоты. Если используются недостаточно точные конденсаторы С1-С6 может понадобиться их подбор или включение параллельно им «достроечных» конденсаторов меньшей ёмкости.
Если нет осциллографа, настроить генератор с удовлетворительным качеством можно и при помощи милливольтметра переменного тока. Нужно установить R6 в положение максимального выходного напряжения ( вверх по схеме ), подключить милливольтметр в Х1 и подстроить R1 так, чтобы милливольтметр показывал где-то 0,8 – 1,1V во всём частотном диапазоне.  автор Иванов А.

источник: ” РАДИОКОНСТРУКТОР “, 3 – 2007, стр. 14-17

Top.Mail.Ru